

Supplementary Material:

Random Projection for fast and efficient multivariate correlation analysis of high-dimensional data: A new approach

Claudia Grellmann*, Jane Neumann, Sebastian Bitzer, Peter Kovacs, Anke Tönjes, Lars T. Westlye, Ole A. Andreassen, Michael Stumvoll, Arno Villringer and Annette Horstmann

*Correspondence: Claudia Grellmann grellmann@cbs.mpg.de

1 SUPPLEMENTARY TABLES

Table 1. Average PLSC and PLSC-RP weights for high-dimensional neuroimaging data The table shows average PLSC weights and average PLSC-RP weights for causal voxels and causal SNPs as compared to non-causal voxels and non-causal SNPs. Causal voxels and causal SNPs receive higher weights than non-causal voxels and SNPs. Average weights are very similar for PLSC and PLSC-RP.

dimensionality of MRI data	PLS analysis	$ ar{w}_{ ext{MRI}} $ for causal voxels	$ \bar{w}_{ ext{MRI}} $ for non-causal voxels	$ \bar{w}_{\rm SNP} $ for causal SNPs	$ \bar{w}_{\mathrm{SNP}} $ for non-causal SNPs
1,000	PLSC	0.0503	0.0256	0.3395	0.0976
	PLSC-RP	0.0506	0.0255	0.3314	0.0995
10,000	PLSC	0.0152	0.0078	0.3863	0.0901
	PLSC-RP	0.0152	0.0078	0.3710	0.0911
20,000	PLSC	0.0116	0.0054	0.3440	0.0934
	PLSC-RP	0.0114	0.0055	0.3266	0.0919
30,000	PLSC	0.0104	0.0044	0.3877	0.0881
	PLSC-RP	0.0104	0.0045	0.3856	0.0898
40,000	PLSC	0.0089	0.0041	0.3663	0.0928
	PLSC-RP	0.0086	0.0041	0.3533	0.0937
50,000	PLSC	0.0084	0.0039	0.3143	0.0993
	PLSC-RP	0.0086	0.0039	0.3123	0.1019
70,000	PLSC	0.0061	0.0033	0.3325	0.1005
	PLSC-RP	0.0058	0.0034	0.3226	0.0973
90,000	PLSC	0.0058	0.0029	0.2873	0.1074
	PLSC-RP	0.0057	0.0029	0.2772	0.1091

Table 2. Average PLSC and PLSC-RP weights for the fMRI face-matching task Average weights for causal and non-causal voxels and SNPs are very similar for PLSC and PLSC-RP.

PLS analysis	$ \bar{w}_{ ext{MRI}} $ for causal voxels	$ \bar{w}_{ ext{MRI}} $ for non-causal voxels	$ \bar{w}_{\text{SNP}} $ for causal SNPs	$ \bar{w}_{\mathrm{SNP}} $ for non-causal SNPs
PLSC	0.0059	0.0017	0.5768	0.0296
PLSC-RP	0.0059	0.0017	0.5757	0.0467

Table 3. Average SNP weights for PLSC and PLSC-RP in the Sorbs

The table shows average PLSC weights and average PLSC-RP weights for causal and non-causal SNPs. In addition, it is illustrated how serum vaspin and body height are weighted in the first component of the phenotype weight profile.

PLS analysis	$ w_{\mathrm{Vaspin}} $	$ w_{Height} $	$ \bar{w}_{\rm SNP} $ for causal SNPs	$ \bar{w}_{\mathrm{SNP}} $ for non-causal SNPs
PLSC	0.7068	0.0285	0.0093	0.0013
PLSC-RP	0.7068	0.0294	0.0093	0.0013

Table 4. Average PLSC and PLSC-RP weights for high-dimensional neuroimaging and high-dimensional SNP data

Causal voxels and causal SNPs receive higher weights than non-causal voxels and SNPs. Average weights are very similar for PLSC and PLSC-RP.

dim. of MRI data	dim. of SNP data	PLS analysis	$ \bar{w}_{\mathrm{MRI}} $ for causal voxels	$ \bar{w}_{ ext{MRI}} $ for non-causal voxels	$ \bar{w}_{\mathrm{SNP}} $ for causal SNPs	$ \bar{w}_{\rm SNP} $ for non-causal SNPs
1,000	1,000	PLSC	0.0405	0.0288	0.0947	0.0246
		PLSC-RP	0.0435	0.0279	0.0985	0.0245
10,000	10,000	PLSC	0.0158	0.0077	0.0370	0.0080
		PLSC-RP	0.0151	0.0078	0.0368	0.0079
20,000	20,000	PLSC	0.0116	0.0054	0.0256	0.0056
		PLSC-RP	0.0106	0.0056	0.0240	0.0056
40,000	40,000	PLSC	0.0092	0.0041	0.0179	0.0040
		PLSC-RP	0.0092	0.0040	0.0187	0.0040
50,000	1,000	PLSC	0.0078	0.0040	0.1073	0.0244
		PLSC-RP	0.0070	0.0039	0.0952	0.0246
1,000	50,000	PLSC	0.0395	0.0290	0.0150	0.0036
		PLSC-RP	0.0361	0.0293	0.0142	0.0036

2 SUPPLEMENTARY EQUATIONS

PLSC-RP for dimensionality reduction in X_1 OR X_2

For traditional PLSC, SVD is used to decompose the cross-product matrix A of X_1 and X_2 , which are both standardized column-wise, into three matrices:

$$cov(X_1, X_2) = A = X_1' X_2 = W_1 S W_2'.$$
 (1)

Assumed that X_1 is high-dimensional, RP transforms X_1 to a lower dimensional space via the following transformation:

$$X_{1_{RP}} = X_1 \cdot R, \tag{2}$$

where R is a random matrix and $X_{1_{RP}}$ is the low-dimensional subspace of X_1 with desired lower dimension k. If we perform PLSC to decompose the cross-product matrix of $X_{1_{RP}}$ and X_2 , we obtain the weights W_2 for data set X_2 , but weights $W_{1_{RP}}$ for the reduced data set $X_{1_{RP}}$. To transform the weights $W_{1_{RP}}$ back to the original space, that is W_1 , we rearrange the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation

$$cov(X_1, X_2) = A = X_1'X_2 = W_1SW_2'.$$

If we extend both sides of the equation by w_{2i} , we obtain

$$A \cdot w_{\mathbf{2}_i} = W_1 S W_2^{'} \cdot w_{\mathbf{2}_i}.$$

Since W_2 is column-wise orthogonal, we have

$$A\cdot w_{2_i}=w_{1_i}s_iw_{2_i}^{'}\cdot w_{2_i}.$$

Rearranging yields

$$rac{1}{s_i} \cdot oldsymbol{A} \cdot oldsymbol{w_{2_i}} = oldsymbol{w_{1_i}} \cdot oldsymbol{w_{2_i}} \cdot oldsymbol{w_{2_i}}.$$

Since the L2-norm for a vector a is given by

$$|a| = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}, \ |a|^2 = a_1^2 + a_2^2 + \ldots + a_n^2,$$

we obtain the weights w_{1_i} , i = 1, ..., p, $p = \min(k, d_2)$, as follows:

$$\boldsymbol{w_{1_i}} = \frac{1}{s_i \cdot |\boldsymbol{w_{2_i}}|^2} \cdot \boldsymbol{A} \cdot \boldsymbol{w_{2_i}}.$$
 (3)

Frontiers 3

PLSC-RP for dimensionality reduction in X_1 AND X_2

Assumed that both X_1 and X_2 are high-dimensional, RP transforms X_1 and X_2 to lower dimensional spaces via the following transformation:

$$X_{1_{\text{RP}}} = X_1 \cdot R_1,$$

$$X_{2_{\text{RP}}} = X_2 \cdot R_2.$$
(4)

If we perform PLSC to decompose the cross-product matrix of $X_{1_{RP}}$ and $X_{2_{RP}}$, we obtain weights $W_{1_{RP}}$ and $W_{2_{RP}}$ for the low dimensional subspaces. To transform the weights $W_{1_{RP}}$ back to the original space W_1 , we rearrange the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation

$$\operatorname{cov}(\boldsymbol{X_1}, \boldsymbol{X_{2_{\operatorname{RP}}}}) = \boldsymbol{W_1} \boldsymbol{SW'_{2_{\operatorname{RP}}}}.$$

If we extend both sides of the equation by $w_{2_{\mathrm{RP}_z}}$, we obtain

$$ext{cov}(oldsymbol{X_1}, oldsymbol{X_{2_{ ext{RP}}}}) \cdot oldsymbol{w_{2_{ ext{RP}}}} = oldsymbol{W_1} oldsymbol{SW}_{2_{ ext{RP}}}' \cdot oldsymbol{w_{2_{ ext{RP}}}}.$$

Since $W_{2_{\rm RP}}$ is column-wise orthogonal, we have

$$\mathrm{cov}(\boldsymbol{X}_{1},\boldsymbol{X}_{2_{\mathrm{RP}}})\cdot\boldsymbol{w}_{2_{\mathrm{RP}_{i}}}=\boldsymbol{w}_{1_{i}}\boldsymbol{s}_{i}\boldsymbol{w}_{2_{\mathrm{RP}_{i}}}^{'}\cdot\boldsymbol{w}_{2_{\mathrm{RP}_{i}}}.$$

Rearranging yields

$$\frac{1}{s_i} \cdot \text{cov}(\boldsymbol{X_1}, \boldsymbol{X_{2_{\text{RP}}}}) \cdot \boldsymbol{w_{2_{\text{RP}_i}}} = \boldsymbol{w_{1_i}} \cdot \boldsymbol{w'_{2_{\text{RP}_i}}} \cdot \boldsymbol{w_{2_{\text{RP}_i}}}.$$

Thus, for the weights w_{1_i} , i = 1, ..., p, $p = \min(k_1, k_2)$, we obtain

$$\boldsymbol{w_{1_i}} = \frac{1}{s_i \cdot |\boldsymbol{w_{2_{RP_i}}}|^2} \cdot \text{cov}(\boldsymbol{X_1}, \boldsymbol{X_{2_{RP}}}) \cdot \boldsymbol{w_{2_{RP_i}}}.$$
 (5)

Following the same logic, the weights $W_{2_{RP}}$ are transformed back to the original space W_2 by rearranging the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation

$$\operatorname{cov}(\boldsymbol{X_{1_{\operatorname{RP}}}}, \boldsymbol{X_{2}}) = \boldsymbol{W_{1_{\operatorname{RP}}}} \boldsymbol{SW_{2}'}.$$

If we extend both sides of the equation by $w_{1_{\mathrm{RP}}}'$, we obtain

$$oldsymbol{w}_{1_{\mathrm{RP}_i}}' \cdot \mathrm{cov}(oldsymbol{X}_{1_{\mathrm{RP}}}, oldsymbol{X}_{2}) = oldsymbol{w}_{1_{\mathrm{RP}_i}}' \cdot oldsymbol{W}_{1_{\mathrm{RP}}} oldsymbol{S} oldsymbol{W}_{2}'.$$

Since $W_{1_{\mathrm{RP}}}$ is column-wise orthogonal, we have

$$\boldsymbol{w_{1_{\text{RP}_{i}}}^{\prime}} \cdot \text{cov}(\boldsymbol{X_{1_{\text{RP}}}}, \boldsymbol{X_{2}}) = \boldsymbol{w_{1_{\text{RP}_{i}}}^{\prime}} \cdot \boldsymbol{w_{1_{\text{RP}_{i}}}} \cdot \boldsymbol{s_{i}} \cdot \boldsymbol{w_{2_{i}}^{\prime}}.$$

Rearranging yields

$$\frac{1}{s_i} \cdot \boldsymbol{w'_{1_{\text{RP}_i}}} \cdot \text{cov}(\boldsymbol{X_{1_{\text{RP}}}}, \boldsymbol{X_2}) = \boldsymbol{w'_{1_{\text{RP}_i}}} \cdot \boldsymbol{w_{1_{\text{RP}_i}}} \cdot \boldsymbol{w'_{2_i}}.$$

Thus, for the weights w_{2i} , $i=1,\ldots,p,$ $p=\min(k_1,k_2)$, we obtain

$$\mathbf{w_{2_i}'} = \frac{1}{s_i \cdot |\mathbf{w_{1_{RP_i}}}|^2} \cdot \mathbf{w_{1_{RP_i}}'} \cdot \text{cov}(\mathbf{X_{1_{RP}}}, \mathbf{X_2}),$$

$$\mathbf{w_{2_i}} = \frac{1}{s_i \cdot |\mathbf{w_{1_{RP_i}}}|^2} \cdot (\text{cov}(\mathbf{X_{1_{RP}}}, \mathbf{X_2}))' \cdot \mathbf{w_{1_{RP_i}}}.$$
(6)

Frontiers 5